Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Adv Food Nutr Res ; 108: 265-287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461001

RESUMO

This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.


Assuntos
Bacillus cereus , Produtos da Carne , Humanos , Bacillus cereus/metabolismo , Manipulação de Alimentos , Esporos Bacterianos/metabolismo , Microbiologia de Alimentos
2.
PLoS One ; 19(1): e0296290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38180967

RESUMO

Antimicrobial resistance is a global threat to human and animal health, with the misuse and overuse of antimicrobials suggested as the main drivers of resistance. Antimicrobial therapy can alter the bacterial community composition and the faecal resistome in cattle. Little is known about the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the presence of disease. Therefore, this study aimed to assess the impact of systemic antimicrobial therapy on the faecal microbiome in dairy cows in the pastoral farm environment, by analysing faecal samples from cattle impacted by several different clinically-defined conditions and corresponding antimicrobial treatments. Analysis at the individual animal level showed a decrease in bacterial diversity and richness during antimicrobial treatment but, in many cases, the microbiome diversity recovered post-treatment when the cow re-entered the milking herd. Perturbations in the microbiome composition and the ability of the microbiome to recover were specific at the individual animal level, highlighting that the animal is the main driver of variation. Other factors such as disease severity, the type and duration of antimicrobial treatment and changes in environmental factors may also impact the bovine faecal microbiome. AmpC-producing Escherichia coli were isolated from faeces collected during and post-treatment with ceftiofur from one cow while no third-generation cephalosporin resistant E. coli were isolated from the untreated cow samples. This isolation of genetically similar plasmid-mediated AmpC-producing E. coli has implications for the development and dissemination of antibiotic resistant bacteria and supports the reduction in the use of critically important antimicrobials.


Assuntos
Anti-Infecciosos , Microbiota , Feminino , Humanos , Bovinos , Animais , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fezes
3.
Microbiol Resour Announc ; 13(2): e0105823, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38197696

RESUMO

Here, we report the whole-genome sequences of 11 Carnobacterium divergens and 2 Carnobacterium maltaromaticum bacteria isolated from vacuum-packed chill-stored lamb meat in New Zealand. Examination of these lactic acid bacteria (LAB) genomes will improve our knowledge of their potential antimicrobial activities and spoilage mechanisms of importance to the meat industry.

4.
PLoS One ; 18(12): e0295843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100478

RESUMO

Land-spreading of animal faecal wastes -such as animal beddings- can introduce zoonotic enteropathogens into the food system environment. The study evaluated the effectiveness of animal beddings naturally contaminated by calf manure to reduce E. coli O157:H7 or Salmonella enterica. The two pathogens were introduced separately as a four strains-cocktail and at high (>6.5 Log10 g-1) concentration into bedding materials, and their inactivation over a 10 weeks-period was monitored by using a Most Probable Number (MPN) enumeration method. Inactivation of E. coli O157:H7 was more effective in the bedding inoculated immediately after collection from calf pens than in the beddings inoculated after a 2 months-pre-storage period: E. coli O157:H7 levels were reduced by 6.6 Log10 g-1 in unstored bedding (0.5 Log10 g-1 recovered; 95%CI: 0.0-1.2), and by 4.9 Log10 g-1 in pre-stored bedding (2.2 Log10 g-1 recovered; 95%CI: 1.5-2.8) with a significant (p<0.05) difference between unstored and pre-stored. S. enterica was inactivated less effectively as counts were reduced by one order of magnitude, with no significant difference in inactivation between unstored and pre-stored beddings. Low levels of naturally occurring E. coli O157 and Salmonella spp. were detected in the non-inoculated beddings, as well as in the straw prior to use in the animal facility. To better understand the possible biological processes involved, the bacterial community present in the beddings was characterised by short-read 16S rRNA sequencing. Pre-storage of the bedding affected the composition but not the diversity of the bacterial community. Analyses of the key bacterial phyla suggested that the presence of a diverse and stable bacterial community might facilitate inactivation of the introduced pathogens, and a possible role of bacterial orders associated with lignocellulolytic resources. Overall, the study contributed to the understanding of the fate of zoonotic bacteria introduced in animal beddings during storage and identified bedding storage practices pre-and post-use in animal facilities that could be important to prevent the risk of zoonosis dissemination to the environment or to the dairy herds.


Assuntos
Escherichia coli O157 , Salmonella enterica , Animais , Contagem de Colônia Microbiana , RNA Ribossômico 16S , Esterco/microbiologia , Microbiologia de Alimentos
5.
J Appl Microbiol ; 134(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37463831

RESUMO

AIMS: The aim of this study was to investigate dual far-UVC (Ultraviolet-C) (222 nm) and blue LED (Light Emitting Diode) (405 nm) light on the inactivation of extended spectrum ß-lactamase-producing Escherichia coli (ESBL-Ec) and to determine if repetitive exposure to long pulses of light resulted in changes to light tolerance, and antibiotic susceptibility. METHODS AND RESULTS: Antimicrobial efficiency of dual and individual light wavelengths and development of light tolerance in E. coli was evaluated through a spread plate method after exposure to light at 25 cm. Dual light exposure for 30 min resulted in a 5-6 log10 CFU mL-1 reduction in two ESBL-Ec and two antibiotic-sensitive control E. coli strains. The overall inhibition achieved by dual light treatment was always greater than the combined reductions (log10 CFU) observed from exposure to individual light wavelengths (combined 222-405 nm), indicating a synergistic relationship between blue LED and far-UVC light when used together. Repetitive long pulses of dual and individual far-UVC light exposure resulted in light tolerance in two ESBL-Ec strains but not the antibiotic-sensitive E. coli strains. Subsequent passages of repetitive light-treated ESBL-Ec strains continued to exhibit light tolerance. Antibiotic susceptibility was determined through a standard disk diffusion method. No changes were observed in the antibiotic susceptibility profiles for any of the four strains after exposure to either dual or individual wavelengths. CONCLUSIONS: Dual light exposure was effective in the disinfection of ESBL-Ec in solution; however, antibiotic-resistant E. coli were able to develop light tolerance after repetitive exposure to light.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , beta-Lactamases , Antibacterianos/farmacologia , Luz
6.
Compr Rev Food Sci Food Saf ; 22(3): 2433-2464, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37039522

RESUMO

The global food demand is expected to increase in the coming years, along with challenges around climate change and food security. Concomitantly, food safety risks, particularly those related to bacterial pathogens, may also increase. Thus, the food sector needs to innovate to rise to this challenge. Here, we discuss recent advancements in molecular techniques that can be deployed within various foodborne bacteria surveillance systems across food settings. To start with, we provide updates on nucleic acid-based detection, with a focus on polymerase chain reaction (PCR)-based technologies and loop-mediated isothermal amplification (LAMP). These include descriptions of novel genetic markers for several foodborne bacteria and progresses in multiplex PCR and droplet digital PCR. The next section provides an overview of the development of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins systems, such as CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas13a, as tools for enhanced sensitive and specific detection of foodborne pathogens. The final section describes utilizations of whole genome sequencing for accurate characterization of foodborne bacteria, ranging from epidemiological surveillance to model-based predictions of bacterial phenotypic traits through genome-wide association studies or machine learning.


Assuntos
Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Bactérias/genética , Inocuidade dos Alimentos
7.
J Appl Microbiol ; 134(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37120734

RESUMO

AIMS: Zoonotic pathogens in bovine herds are major concerns for human and animal health, but their monitoring in animals can be challenging in the absence of clinical signs. Our objective was to determine the association between fecal excretion of Campylobacter jejuni, neonatal immunity, and personality traits of calves. METHODS AND RESULTS: Forty-eight dairy calves were reared in three indoor pens from birth to 4 weeks of life. Microbial analyses of the fecal samples collected weekly revealed that the proportion of calves naturally contaminated with C. jejuni in each pen reached 70% after 3 weeks of life. High (>16 g l-1) levels of IgG levels in the serum of neonatal calves were negatively (P = .04) associated with fecal detection of C. jejuni over the trial period. Calves that spent more time interacting with a novel object tended to be positive (P = .058) for C. jejuni. CONCLUSIONS: Overall, the findings indicate that the immunity of neonatal dairy animals and possibly the animal's behavior may contribute to the fecal shedding of C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Animais , Bovinos , Humanos , Infecções por Campylobacter/veterinária , Animais Recém-Nascidos , Fezes , Personalidade
8.
Metabolites ; 13(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837871

RESUMO

This work focused on the metabolomic profiling of the conditioned medium (FS03CM) produced by an anaerobic bacterium closely related to Terrisporobacter spp. to identify potential antimicrobial metabolites. The metabolome of the conditioned medium was profiled by two-channel Chemical Isotope Labelling (CIL) LC-MS. The detected metabolites were identified or matched by conducting a library search using different confidence levels. Forty-eight significantly changed metabolites were identified with high confidence after the growth of isolate FS03 in cooked meat glucose starch (CMGS) medium. Some of the secondary metabolites identified with known antimicrobial activities were 4-hydroxyphenyllactate, 3-hydroxyphenylacetic acid, acetic acid, isobutyric acid, valeric acid, and tryptamine. Our findings revealed the presence of different secondary metabolites with previously reported antimicrobial activities and suggested the capability of producing antimicrobial metabolites by the anaerobic bacterium FS03.

9.
Foods ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553859

RESUMO

The thermal processing of food relies heavily on determining the right time and temperature regime required to inactivate bacterial contaminants to an acceptable limit. To design a thermal processing regime with an accurate time and temperature combination, the D-values of targeted microorganisms are either referred to or estimated. The D-value is the time required at a given temperature to reduce the bacterial population by 90%. The D-value can vary depending on various factors such as the food matrix, the bacterial strain, and the conditions it has previously been exposed to; the intrinsic properties of the food (moisture, water activity, fat content, and pH); the method used to expose the microorganism to the thermal treatment either at the laboratory or commercial scale; the approach used to estimate the number of survivors; and the statistical model used for the analysis of the data. This review focused on Bacillus cereus, Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, and Clostridium perfringens owing to their pathogenicity and the availability of publications on their thermal resistance. The literature indicates a significant variation in D-values reported for the same strain, and it is concluded that when designing thermal processing regimes, the impact of multiple factors on the D-values of a specific microorganism needs to be considered. Further, owing to the complexity of the interactions involved, the effectiveness of regimes derived laboratory data must be confirmed within industrial food processing settings.

10.
Front Microbiol ; 13: 976152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238595

RESUMO

The diversity of the genus Shewanella and their roles across a variety of ecological niches is largely unknown highlighting the phylogenetic diversity of these bacteria. From a food safety perspective, Shewanella species have been recognized as causative spoilage agents of vacuum-packed meat products. However, the genetic basis and metabolic pathways for the spoilage mechanism are yet to be explored due to the unavailability of relevant Shewanella strains and genomic resources. In this study, whole-genome sequencing of 32 Shewanella strains isolated from vacuum-packaged refrigerated spoiled lamb was performed to examine their roles in meat spoilage. Phylogenomic reconstruction revealed their genomic diversity with 28 Shewanella spp. strains belonging to the same putative novel species, two Shewanella glacialipiscicola strains (SM77 and SM91), Shewanella xiamenensis NZRM825, and Shewanella putrefaciens DSM 50426 (ATCC 8072) isolated from butter. Genome-wide clustering of orthologous gene families revealed functional groupings within the major Shewanella cluster but also considerable plasticity across the different species. Pan-genome analysis revealed conserved occurrence of spoilage genes associated with sulfur and putrescine metabolism, while the complete set of trimethylamine metabolism genes was observed in only Shewanella sp. SM74, S. glacialipiscicola SM77 and SM91 strains. Through comparative genomics, some variations were also identified pertaining to genes associated with adaptation to environmental cues such as temperature, osmotic, salt, oxidative, antimicrobial peptide, and drug resistance stresses. Here we provide a reference collection of draft Shewanella genomes for subsequent species descriptions and future investigations into the molecular spoilage mechanisms for further applications in the meat industry.

11.
Microb Genom ; 8(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36200854

RESUMO

Extended-spectrum beta lactamase (ESBL)-producing Escherichia coli are often isolated from humans with urinary tract infections and may display a multidrug-resistant phenotype. These pathogens represent a target for a One Health surveillance approach to investigate transmission between humans, animals and the environment. This study examines the multidrug-resistant phenotype and whole genome sequence data of four ESBL-producing E. coli isolated from freshwater in New Zealand. All four isolates were obtained from a catchment with a mixed urban and pastoral farming land-use. Three isolates were sequence type (ST) 131 (CTX-M-27-positive) and the other ST69 (CTX-M-15-positive); a phylogenetic comparison with other locally isolated strains demonstrated a close relationship with New Zealand clinical isolates. Genes associated with resistance to antifolates, tetracyclines, aminoglycosides and macrolides were identified in all four isolates, together with fluoroquinolone resistance in two isolates. The ST69 isolate harboured the bla CTX-M-15 gene on a IncHI2A plasmid, and two of the three ST131 isolates harboured the bla CTX-M-27 genes on IncF plasmids. The last ST131 isolate harboured bla CTX-M-27 on the chromosome in a unique site between gspC and gspD. These data highlight a probable human origin of the isolates with subsequent transmission from urban centres through wastewater to the wider environment.


Assuntos
Infecções por Escherichia coli , Antagonistas do Ácido Fólico , Aminoglicosídeos , Animais , Antibacterianos/farmacologia , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Fluoroquinolonas/farmacologia , Água Doce , Humanos , Macrolídeos , Testes de Sensibilidade Microbiana , Nova Zelândia , Filogenia , Análise de Sequência , Tetraciclinas , Águas Residuárias , beta-Lactamases/genética
12.
Front Microbiol ; 13: 960748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033848

RESUMO

Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum ß-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic "One Health" approach to address.

13.
Pathogens ; 11(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36014991

RESUMO

The COVID-19 pandemic has required novel solutions, including heat disinfection of personal protective equipment (PPE) for potential reuse to ensure availability for healthcare and other frontline workers. Understanding the efficacy of such methods on pathogens other than SARS-CoV-2 that may be present on PPE in healthcare settings is key to worker safety, as some pathogenic bacteria are more heat resistant than SARS-CoV-2. We assessed the efficacy of dry heat treatment against Clostridioides difficile spores and Mycobacterium tuberculosis (M. tb) on filtering facepiece respirator (FFR) coupons in two inoculums. Soil load (mimicking respiratory secretions) and deionized water was used for C. difficile, whereas, soil load and PBS and Tween mixture was used for M. tb. Dry heat treatment at 85 °C for 240 min resulted in a reduction equivalent to 6.0-log10 CFU and 7.3-log10 CFU in C. difficile spores inoculated in soil load and deionized water, respectively. Conversely, treatment at 75 °C for 240 min led to 4.6-log10 CFU reductions in both soil load and deionized water. C. difficile inactivation was higher by >1.5-log10 CFU in deionized water as compared to soil load (p < 0.0001), indicating the latter has a protective effect on bacterial spore inactivation at 85 °C. For M. tb, heat treatment at 75 °C for 90 min and 85 °C for 30 min led to 8-log10 reduction with or without soil load. Heat treatment near the estimated maximal operating temperatures of FFR materials (which would readily eliminate SARS-CoV-2) did not achieve complete inactivation of C. difficile spores but was successful against M. tb. The clinical relevance of surviving C. difficile spores when subjected to heat treatment remains unclear. Given this, any disinfection method of PPE for potential reuse must ensure the discarding of any PPE, potentially contaminated with C. difficile spores, to ensure the safety of healthcare workers.

14.
Foods ; 11(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35742009

RESUMO

Thermal processing of packaged fruit and vegetable products is targeted at eliminating microbial contaminants (related to spoilage or pathogenicity) and extending shelf life using microbial inactivation or/and by reducing enzymatic activity in the food. The conventional process of thermal processing involves sterilization (canning and retorting) and pasteurization. The parameters used to design the thermal processing regime depend on the time (minutes) required to eliminate a known population of bacteria in a given food matrix under specified conditions. However, due to the effect of thermal exposure on the sensitive nutrients such as vitamins or bioactive compounds present in fruits and vegetables, alternative technologies and their combinations are required to minimize nutrient loss. The novel moderate thermal regimes aim to eliminate bacterial contaminants while retaining nutritional quality. This review focuses on the "thermal" processing regimes for fruit and vegetable products, including conventional sterilization and pasteurization as well as mild to moderate thermal techniques such as pressure-assisted thermal sterilization (PATS), microwave-assisted thermal sterilization (MATS) and pulsed electric field (PEF) in combination with thermal treatment as a hurdle approach or a combined regime.

15.
Compr Rev Food Sci Food Saf ; 21(4): 3717-3745, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35686478

RESUMO

Hyperspectral imaging (HSI) is a robust and nondestructive method that can detect foreign particles such as microbial, chemical, and physical contamination in food. This review summarizes the work done in the last two decades in this field with a highlight on challenges, risks, and research gaps. Considering the challenges of using HSI on complex matrices like food (e.g., the confounding and masking effects of background signals), application of machine learning and modeling approaches that have been successful in achieving better accuracy as well as increasing the detection limit have also been discussed here. Foodborne microbial contaminants such as bacteria, fungi, viruses, yeast, and protozoa are of interest and concern to food manufacturers due to the potential risk of either food poisoning or food spoilage. Detection of these contaminants using fast and efficient methods would not only prevent outbreaks and recalls but will also increase consumer acceptance and demand for shelf-stable food products. The conventional culture-based methods for microbial detection are time and labor-intensive, whereas hyperspectral imaging (HSI) is robust, nondestructive with minimum sample preparation, and has gained significant attention due to its rapid approach to detection of microbial contaminants. This review is a comprehensive summary of the detection of bacterial, viral, and fungal contaminants in food with detailed emphasis on the specific modeling and datamining approaches used to overcome the specific challenges associated with background and data complexity.


Assuntos
Microbiologia de Alimentos , Imageamento Hiperespectral , Bactérias , Contaminação de Alimentos/análise , Aprendizado de Máquina
16.
PLoS One ; 17(4): e0266406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35363830

RESUMO

The exploitation of natural antimicrobial compounds that can be used in food preservation has been fast tracked by the development of antimicrobial resistance to existing antimicrobials and the increasing consumer demand for natural food preservatives. 2-hydroxyisocaproic acid (HICA) is a natural compound produced through the leucine degradation pathway and is produced in humans and by certain microorganisms such as lactic acid bacteria and Clostridium species. The present study investigated the antibacterial efficacy of HICA against some important bacteria associated with food quality and safety and provided some insights into its possible antimicrobial mechanisms against bacteria. The results revealed that HICA was effective in inhibiting the growth of tested Gram-positive and Gram-negative bacteria including a multi-drug resistant P. aeruginosa strain in this study. The underlying mechanism was investigated by measuring the cell membrane integrity, membrane permeability, membrane depolarisation, and morphological and ultrastructural changes after HICA treatment in bacterial cells. The evidence supports that HICA exerts its activity via penetration of the bacterial cell membranes, thereby causing depolarisation, rupture of membranes, subsequent leakage of cellular contents and cell death. The current study suggests that HICA has potential to be used as an antibacterial agent against food spoilage and food-borne pathogenic bacteria, targeting the bacterial cell envelope.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Caproatos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana
17.
Appl Environ Microbiol ; 88(9): e0027722, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442082

RESUMO

Generic Escherichia coli is commonly used as an indicator of fecal contamination to assess water quality and human health risk. Where measured E. coli exceedances occur, the presence of other pathogenic microorganisms, such as Shiga toxin-producing E. coli (STEC), is assumed, but confirmatory data are lacking. Putative E. coli isolates (n = 709) were isolated from water, sediment, soil, periphyton, and feces samples (n = 189) from five sites representing native forest and agricultural environments. Ten E. coli isolates (1.41%) were stx2 positive, 19 (2.7%) were eae positive, and stx1-positive isolates were absent. At the sample level, stx2-positive E. coli (5 of 189, 2.6%) and eae-positive isolates (16 of 189, 8.5%) were rare. Using real-time PCR, these STEC-associated virulence factors were determined to be more prevalent in sample enrichments (stx1, 23.9%; stx2, 31.4%; eae, 53.7%) and positively correlated with generic E. coli isolate numbers (P < 0.05) determined using culture-based methods. Whole-genome sequencing (WGS) was undertaken on a subset of 238 isolates with assemblies representing seven E. coli phylogroups (A, B1, B2, C, D, E, and F), 22 Escherichia marmotae isolates, and 1 Escherichia ruysiae isolate. Virulence factors, including those from extraintestinal pathogenic E. coli, were extremely diverse in isolates from the different locations and were more common in phylogroup B2. Analysis of the virulome from WGS data permitted the identification of gene repertoires that may be involved in environmental fitness and broadly align with phylogroup. Although recovery of STEC isolates was low, our molecular data indicate that they are likely to be widely present in environmental samples containing diverse E. coli phylogroups. IMPORTANCE This study takes a systematic sampling approach to assess the public health risk of Escherichia coli recovered from freshwater sites within forest and farmland. The New Zealand landscape is dominated by livestock farming, and previous work has demonstrated that "recreational exposure to water" is a risk factor for human infection by Shiga toxin-producing Escherichia coli (STEC). Though STEC isolates were rarely isolated from water samples, STEC-associated virulence factors were identified more commonly from water sample culture enrichments and were associated with increased generic E. coli concentrations. Whole-genome sequencing data from both E. coli and newly described Escherichia spp. demonstrated the presence of virulence factors from E. coli pathotypes, including extraintestinal pathogenic E. coli. This has significance for understanding and interpreting the potential health risk from E. coli where water quality is poor and suggests a role of virulence factors in survival and persistence of E. coli and Escherichia spp.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Proteínas de Escherichia coli/genética , Fezes , Humanos , Nova Zelândia , Fatores de Virulência/genética
18.
Foods ; 11(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35327267

RESUMO

Antimicrobial resistance (AMR) is a growing global concern and has called for the integration of different areas of expertise for designing robust solutions. One such approach is the development of antimicrobial surfaces to combat the emerging resistance in microbes against drugs and disinfectants. This review is a compressive summary of the work done in the field of material science, chemistry, and microbiology in the development of antimicrobial materials and surfaces that are inspired by examples in nature. The focus includes examples of natural antimicrobial surfaces, such as cicada wings or nanopillars, dragonfly wings, shrimp shells, taro leaves, lotus leaves, sharkskin, gecko skin, and butterfly wings, along with their mechanism of action. Techniques, compositions, and combinations that have been developed to synthetically mimic these surfaces against bacterial/viral and fungal growth in food-processing areas have also been discussed. The applications of synthetic mimics of natural antimicrobial surfaces in food-processing environments is still a naïve area of research. However, this review highlights the potential applications of natural antimicrobial surfaces in the food-processing environment as well as outlines the challenges that need mitigations.

19.
Microbiol Resour Announc ; 11(4): e0007622, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35293824

RESUMO

Thermoactinomyces species are heat-resistant spore-forming bacteria that are capable of producing proteases. Here, we report the draft genome sequence of a new Thermoactinomyces vulgaris strain, AGRTWHS02, with a strong proteolytic activity, which was isolated from a sheep dairy farm environment in New Zealand. The genome is 2.56 Mbp, with a GC content of 47.9%.

20.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166653

RESUMO

Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.


Assuntos
Clostridium/crescimento & desenvolvimento , Clostridium/genética , Carne/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Clostridium/classificação , Hibridização Genômica Comparativa , DNA Bacteriano , Microbiologia de Alimentos , Genes Bacterianos , Genoma Bacteriano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...